
D
ow

nloaded from
 http://journals.lw

w
.com

/acsm
-m

sse by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 05/01/2024
APPLIED SCIENCES
Blood Test–Based Age Acceleration Is
Inversely Associated with High-Volume
Sports Activity
VENCEL JUHÁSZ1, ANNA ORSZÁG2, DOROTTYA BALLA1, LILIÁNA SZABÓ1, NÓRA SYDÓ1,3, ORSOLYA KISS1,3,
EMESE CSULAK1, MÁTÉ BABITY1, ZSÓFIA DOHY1, RÉKA SKODA1, DÁVID BECKER1, BÉLA MERKELY1,3,
ANDRÁS BENCZÚR2, HAJNALKA VÁGÓ1,3, and CSABA KEREPESI2

1Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY; 2Institute for Computer Science and Control
(SZTAKI), Hungarian Research Network (HUN-REN), Budapest, HUNGARY; 3Department of Sports Medicine, Semmelweis
University, Budapest, HUNGARY
ABS
Address fo
Budapest H
Kerepesi, K
Vencel Juh
equally and
Submitted
Accepted f
Supplemen
appear in t
of this artic

0195-9131
MEDICIN
Copyright
on behalf o
article distr
Commercia
sible to dow
cannot be c
the journal

DOI: 10.12
TRACT

JUHÁSZ, V., A. ORSZÁG, D. BALLA, L. SZABÓ, N. SYDÓ, O. KISS, E. CSULAK, M. BABITY, Z. DOHY, R. SKODA, D. BECKER,

B. MERKELY, A. BENCZÚR, H. VÁGÓ, and C. KEREPESI. Blood Test–Based Age Acceleration Is Inversely Associated with

High-Volume Sports Activity.Med. Sci. Sports Exerc., Vol. 56, No. 5, pp. 868-875, 2024. Purpose:We develop blood test–based aging

clocks and examine how these clocks reflect high-volume sports activity.Methods:We use blood tests and body metrics data of 421 Hungarian

athletes and 283 age-matched controls (mean age, 24.1 and 23.9 yr, respectively), the latter selected from a group of healthy Caucasians of the

National Health and Nutrition Examination Survey (NHANES) to represent the general population (n = 11,412). We train two age prediction

models (i.e., aging clocks) using the NHANES dataset: the first model relies on blood test parameters only, whereas the second one additionally

incorporates body measurements and sex.Results:We find lower age acceleration among athletes compared with the age-matched controls with a me-

dian value of −1.7 and 1.4 yr, P < 0.0001. BMI is positively associated with age acceleration among the age-matched controls (r = 0.17, P< 0.01) and

the unrestrictedNHANESpopulation (r=0.11,P< 0.001).We find no association betweenBMI and age accelerationwithin the athlete dataset. Instead,

age acceleration is positively associated with body fat percentage (r = 0.21, P < 0.05) and negatively associated with skeletal muscle mass (Pearson

r=−0.18,P<0.05) among athletes. Themost important blood test features in age predictionswere serum ferritin,mean cell volume, bloodurea nitrogen,

and albumin levels.Conclusions:We develop and apply blood test–based aging clocks to adult athletes and healthy controls. The data sug-

gest that high-volume sports activity is associated with slowed biological aging. Here, we propose an alternative, promising application of

routine blood tests. Key Words: AGING CLOCK, ATHLETES, BIOLOGICAL AGE, BLOOD TEST, PHYSICAL ACTIVITY
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Aging has a significant effect on health, the economy,
and society, yet its biological mechanisms remain
poorly understood. Importantly, there is a distinction

between biological age and chronological age. Biological age
can deviate from chronological age, with higher or lower
values indicating accelerated or slowed aging, respectively.
Recently, epigenetic clocks, which are machine learning models
predicting an individual’s age based on epigenetic markers, have
emerged as the gold standard tools for measuring the aging pro-
cess (1–6). Epigenetic clocks have demonstrated accelerated ag-
ing in individuals afflicted with aging-related diseases and
outperformed chronological age in predicting mortality. Accord-
ingly, it is thought that epigenetic clocks effectively measure bi-
ological age (7–12). Certain dietary and lifestyle factors influ-
ence biological age as determined by epigenetic clocks. For
instance, factors such as consuming fish, poultry, fruits, and
vegetables and engaging in regular exercise have been associated
with slower epigenetic aging. Conversely, factors such as red
meat consumption, high blood pressure, high BMI, and smoking
have been linked to accelerated epigenetic aging (6,13,14).
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Over the recent years, variousmethods have emerged to assess
the biological age of young athletes. McClean et al. (15) used
hand–wrist imaging to predict biological age in pediatric athletes.
They found that ECG interpretation governed by biological age
provided excellent diagnostic accuracy and performed better in
detecting an underlying cardiac condition than chronological
age. Another application involves measuring the telomere length,
which seems to carry clinical importance as early as childhood.
Skilton et al. (16) found that arterial wall thickness, a marker of
vascular disease risk, was associated with decreased telomere
length, a marker of aging, already at the age of 8 yr. Spólnicka
et al. (17) examined DNA methylation of young elite athletes
(mean age 24.8 yr) and matched controls (mean age 24.2 yr) by
using epigenetic clocks based on five CpG sites. They found an
increased epigenetic age acceleration in athletes,which contradicts
epidemiological data showing longer life span of athletes. The age
predictions were based on only two genes, TRIM59 and KLF14,
which are linked to anticancer and anti-inflammatory effects po-
tentially contributing to the increased life expectancy of athletes.
The authors concluded that intense physical training might
have a complex influence on the aging process.

Here, we aim to investigate whether standard blood tests are
suitable for determining the biological age of athletes and the
general population. Standard blood tests offer advantages be-
cause of their cost-effectiveness, regular availability, and wide-
spread accessibility in significant quantities. Blood test–based
age prediction models were developed using deep learning,
and the age acceleration of these clocks was associated with
all-cause mortality and smoking status (18–20). A recent study
using the National Health and Nutrition Examination Survey
(NHANES) database for training and testing discovered that
factors such as beingmale, having a lower socioeconomic status,
exposure to tobacco, leading a sedentary lifestyle, experiencing
obesity, or having a systemic disease were linked to a higher
deviation in personalized physiological age (PPA) (21).

In this study, we train and test aging clocks based on blood
tests and body measurements using the publicly available
NHANES database. Additionally, we apply the clocks on a
dataset comprising 421 Hungarian athletes previously collected
in another study (22).
METHODS

Participants and measurements. We studied 421
Hungarian athletes of Caucasian ethnicity, ranging in age from
14 to 56 yr (hereafter referred to as the athlete dataset). The
athletes included individuals engaged in leisure (n = 56), com-
petitive (n = 211), and elite-level (n = 154) sports activities
(categorized according to the 2020 ESC guidelines [23]), and
their blood samples were collected at a tertiary cardiovascular
center. The recruitment strategy did not involve any active so-
licitation or intervention. Professional athletes visited the clinic
for mandatory testing before being permitted to return to play
after SARS-CoV-2 infection, whereas leisure athletes re-
quested testing on their own initiative. The laboratory testing
was carried out approximately 24 d after the athletic subjects’
SPORTS DECELERATE BIOLOGICAL AGING
SARS-CoV-2 infection. The detailed results of these tests have
been published by Juhász et al. (22). Note that written informed
consent was obtained from the participants beforehand.

We included the following 36 blood test measurements in our
calculations: red blood cell count (million cells per microliter),
red blood cell distribution width (%), white blood cell count
(1000 cells per microliter), segmented neutrophil count (1000
cells per microliter), lymphocyte count (1000 cells per microli-
ter), basophil count (1000 cells per microliter), eosinophil count
(1000 cells per microliter), monocyte count (1000 cells per mi-
croliter), platelet count (1000 cells per microliter), mean cell he-
moglobin (pg), mean cell hemoglobin concentration (g·dL−1),
mean cell volume (fL), hemoglobin (g·dL−1), hematocrit (%),
iron in refrigerated serum (μmol·L−1), transferrin saturation (%), to-
tal iron binding capacity (μmol·L−1), ferritin (μg·L−1), C-reactive
protein (mg·dL−1), gamma-glutamyl transferase (GGT, IU·L−1),
alkaline phosphatase (U·L−1), alanine transaminase (ALT or
GPT, U·L−1), aspartate-aminotransferase (AST or GOT, U·L−1),
total protein (g·L−1), albumin (g·dL−1), LDH (U·L−1), uric acid
(μmol·L−1), total bilirubin (μmol·L−1), LDL cholesterol
(mmol·L−1),HDLcholesterol (mmol·L−1), triglycerides (mmol·L−1),
creatinine in refrigerated serum (μmol·L−1), blood urea nitro-
gen (mmol·L−1), sodium (mmol·L−1), potassium (mmol·L−1),
and glucose in serum (mmol·L−1). We also measured weight,
height, BMI, body fat percentage, skeletal muscle mass
(SMM), and the reported weekly training hours of the athletes.
Body composition was derived from a bioimpedance-based
method using Inbody 770 (InBody, Cerritos, CA).

From the NHANES database, we selected Caucasian indi-
viduals who self-reported being in good, very good, or excel-
lent health status. We further refined our selection to individ-
uals for whom all 36 blood measurements, along with height,
weight, and BMI data, were available. For better modeling ac-
curacy, we only included records with age information pro-
vided in months. After applying these criteria, our search strat-
egy yielded a total of 11,412 patient records from the period
spanning 2001 to 2010 with an age range from 12 to 79.2 yr.
This dataset is referred to as the NHANES full dataset. Details
of the measurements used in the study are shown in Table 1.

Machine learning-based age prediction. In con-
structing aging clocks based on blood tests, we used machine
learning algorithms to train a regression model. In this setup,
chronological age served as the outcome, whereas predictors
included blood test parameters, body measurements, and sex.
First, we split the 11,412 samples of the NHANES full dataset
into a training set of 9243 samples, a validation set of 1027
samples, and a test set of 1142 samples, hereafter referred to
as the NHANES training, validation, and test datasets. We
refrained from employing imputation methods; rather, we kept
missing values intact in the data. Missing value distributions of
the datasets are available in Supplemental Figure 1 (Supple-
mental Digital Content 1, The distribution of missing values
in the different datasets, http://links.lww.com/MSS/C991).

We deployed LightGBM, an efficient implementation of the
gradient boosting decision tree algorithm (24). We trained two
age predictors by using the NHANES training dataset. The first
Medicine & Science in Sports & Exercise® 869
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TABLE 1. Descriptive statistics of the measurements used in the athlete dataset, the age-matched NHANES test dataset, and the NHANES full dataset.

Athlete Dataset Age-Matched NHANES Test Dataset NHANES Full Dataset

n Mean SD n Mean SD n Mean SD

Age 421 24.1 8.8 283 23.9 8.7 11,412 41.8 20.2
Number of females 167 (40%) N/A N/A 149 (53%) N/A N/A 5,772 (51%) N/A N/A
Number of males 254 (60%) N/A N/A 134 (47%) N/A N/A 5,640 (49%) N/A N/A
Weight (kg) 421 77.1 15.2 280 75.9 20.7 11,309 78.0 20.3
Standing height (cm) 421 179.6 9.9 281 170.6 20.1 11,314 169.6 9.9
Body mass index (kg·m−2) 421 23.7 3.2 280 26.1 6.4 11,283 27.0 6.2
SMM (kg) 121 34.9 7.4 N/A N/A N/A N/A N/A N/A
Body fat percentage (%) 125 19.2 6.8 N/A N/A N/A N/A N/A N/A
Weekly training hours 420 13.2 6.5 N/A N/A N/A N/A N/A N/A
Albumin (g·dL−1) 421 49.5 3.1 259 43.4 4.5 10,900 43.0 3.6
Alkaline phosphatase (U·L−1) 421 86.3 51.6 61 85.6 55.5 2,418 84.2 56.4
Alanine transaminase (ALT/GPT, U·L−1) 421 19.3 14.6 258 21.3 12.7 10,846 24.0 24.5
Aspartate-aminotransferase (AST/GOT, U·L−1) 421 21.6 7.3 258 23.0 6.9 10,845 24.7 11.4
Basophil count (1000 cells per microliter) 421 0.0 0.0 263 0.0 0.1 10,976 0.0 0.1
Blood urea nitrogen (mmol·L−1) 421 5.2 1.3 259 3.9 1.4 10,900 4.5 1.8
C-reactive protein (mg·dL−1) 421 0.1 0.6 263 0.3 0.6 10,949 0.3 0.7
Creatinine in refrigerated serum (μmol·L−1) 421 77.7 14.1 259 72.2 15.6 10,900 76.7 22.2
Eosinophil count (1000 cells per microliter) 421 0.1 0.1 263 0.2 0.1 10,976 0.2 0.2
Ferritin (μg·L−1) 421 94.1 88.6 160 58.2 82.3 5,105 75.7 105.3
Gamma-glutamyl transferase (GGT, IU·L−1) 421 15.6 14.4 259 18.3 16.2 10,900 23.7 30.4
Glucose in serum (mmol·L−1) 421 5.1 3.3 259 4.8 0.6 10,900 5.2 1.4
HDL cholesterol (mmol·L−1) 421 1.5 0.4 200 1.3 0.4 8,497 1.4 0.4
Hematocrit (%) 421 43.1 3.3 263 42.4 4.6 11,000 42.4 4.1
Hemoglobin (g·dL−1) 421 14.8 1.2 263 14.5 1.6 11,000 14.5 1.4
Iron in refrigerated serum (μmol·L−1) 421 20.8 7.1 259 16.5 7.2 10,894 16.3 6.7
LDH (U·L−1) 421 284.1 55.8 197 119.9 21.7 8,426 128.6 28.0
LDL cholesterol (mmol·L−1) 421 2.8 0.8 129 2.6 0.7 5,068 2.9 0.9
Lymphocyte count (1000 cells per microliter) 421 2.0 0.5 263 2.2 0.6 10,976 2.1 1.1
Mean cell hemoglobin concentration (g·dL−1) 421 34.2 1.4 263 34.2 0.8 11,000 34.2 0.8
Mean cell hemoglobin (pg) 421 30.6 13.5 263 30.5 1.9 11,000 30.8 1.9
Mean cell volume (fL) 421 87.0 3.8 263 89.2 4.7 11,000 90.0 4.7
Monocyte count (1000 cells per microliter) 421 0.5 0.1 263 0.6 0.2 10,976 0.6 0.2
Platelet count (1000 cells per microliter) 421 242.6 53.0 263 260.8 53.6 11,000 263.0 65.9
Potassium (mmol·L−1) 421 4.3 0.3 259 4.0 0.3 10,900 4.0 0.3
Red blood cell count (million cells per microliter) 421 5.0 0.5 263 4.8 0.6 11,000 4.7 0.5
Red blood cell distribution width (%) 421 12.1 0.9 263 12.4 0.7 11,000 12.5 0.9
Segmented neutrophil count (1000 cells per microliter) 421 3.5 1.3 263 4.6 1.8 10,976 4.4 1.7
Sodium (mmol·L−1) 421 138.8 1.7 259 138.8 2.2 10,899 139.1 2.2
Total bilirubin (μmol·L−1) 421 11.0 7.3 259 13.5 7.1 10,895 13.3 5.4
Total iron binding

capacity (μmol·L−1)
421 69.7 10.7 119 68.0 11.2 4,087 66.8 11.6

Total protein (g·L−1) 421 71.8 4.2 259 71.7 5.4 10,892 71.0 4.6
Transferrin saturation (%) 421 30.5 11.6 119 24.3 11.7 4,086 24.8 11.8
Triglycerides (mmol·L−1) 421 1.2 0.7 259 1.4 1.0 10,895 1.6 1.4
Uric acid (μmol·L−1) 421 297.8 73.9 259 315.2 87.0 10,899 317.5 80.9
White blood cell count (1000 cells per microliter) 421 6.2 1.5 263 7.6 2.1 11,000 7.3 2.3

The first 10 rows contain age, sex, body metrics, and weekly training hours, followed by 36 laboratory blood test measurements.
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predictor solely encompassed variables related to blood test pa-
rameters (referred to as clock 1), whereas the second one incorpo-
rated body measurements (height, weight, and BMI) and sex in
addition (referred to as clock 2). We performed model parameter
optimization using the NHANES validation set. We selected the
models with the lowest mean absolute error (MAE) obtained be-
tween chronological age and predicted age. For both clocks, the
optimal model was constructed by using depth 5 trees with 10
leaves, a learning rate of 0.2, and 100 boosting iterations.

Tomaintain the integrity of the comparisonwith athletes and to
prevent any overlap with data used for model training or parame-
ter optimization, additional experiments were conducted exclu-
sively on the NHANES test set, serving as an independent testing
set. Out of the NHANES test set, we selected a control group
whose age distribution matched the age distribution of the athlete
dataset, which we hereafter refer to as the age-matched NHANES
test dataset. By age matching, we sampled 283 of the 1142 in-
dividuals in the NHANES test dataset, see Table 1.
870 Official Journal of the American College of Sports Medicine
Predicted age, delta age, and age acceleration.
We examined three distinct aging-related metrics that have
the potential to capture the difference between chronological
and biological age. These metrics encompass predicted age,
delta age, and age acceleration.

The predicted age is the output of the age prediction models
(clock 1 and clock 2) based on blood test parameters. We hy-
pothesize that predicted age is a better estimate of biological
age than chronological age. We calculated delta age (or age
gap) by subtracting the chronological age from the predicted
age of each individual (i.e., delta age = predicted age − chrono-
logical age). This measurement represents the difference be-
tween biological age and chronological age. A higher delta
age indicates accelerated aging when comparing two individ-
uals with the same chronological age.

Age acceleration is defined by Thompson et al. (25) as the
deviation of the individual’s biological age from the trend.
Age acceleration is calculated for an individual as the residual
http://www.acsm-msse.org
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TABLE 2. Performance of the blood test–based age prediction models.

Models NHANES Test Dataset Age-Matched NHANES Test Dataset Athlete Dataset

Model Name Training Parameters MAE (yr) Pearson r MAE (yr) Pearson r MAE (yr) Pearson r

Clock 1 Laboratory parameters 9.33 0.80 9.63 0.54 9.29 0.44
Clock 2 Laboratory parameters, body metrics, sex 8.93 0.82 9.45 0.55 8.40 0.46
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 on 05/01/2024
after fitting a regression line between predicted and chronolog-
ical age. In our experiments, we relied on the regression line of
the NHANES test dataset as a reference for both the NHANES
test dataset and the athlete dataset. In our statistical analysis, we
preferred age acceleration over delta age because age acceleration
is independent of age by definition. In essence, our investigation
focuses on the deviation from the usual aging pattern, irrespective
of an individual’s chronological age. This approach is deemed a
more dependable measure for comparing aging-related effects
across diverse age groups and populations.

Statistical analysis. We used the Python package SciPy
(26) for statistical calculations.We calculated two-sided t-tests
to compare two independent groups. A P value less than 0.05
was considered significant. For comparing repeated test results,
a one-sample t-test was calculated for the differences
(popmean = 0) after we adjusted the predicted age of the second
measurement by the elapsed time. We evaluated correlations by
the Pearson correlation coefficient (r).We used the following no-
tation for P values: ns for P > 0.05, * 0.05 > P ≥ 0.01, **
0.01>P ≥ 0.001, *** 0.001>P ≥ 0.0001, and **** 0.0001 ≥P.
A
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Performance of blood test–based age prediction
is comparable for athletes and controls. To assess the
biological age of athletes, we developed two aging clocks
(clocks 1 and 2) using a large cohort of healthy Caucasian peo-
ple from the NHANES database. We trained clock 1 on only
blood tests, whereas clock 2 was trained using blood tests, body
measurements (height, weight, BMI), and sex. We tested both
clocks on three datasets: (i) the NHANES test dataset, (ii) the
age-matched NHANES test dataset, and (iii) the athlete dataset
(Table 2, Fig. 1). The prediction performance for the athlete
dataset was comparable with the age-matched NHANES test
dataset by both clocks (Table 2). The athlete dataset comprised
421 subjects, delineated as follows: 154 elite athletes (37%),
211 competitive athletes (50%), and 56 leisure athletes (13%).
FIGURE 1—Chronological and predicted age over the age-matched NHANES te
Age prediction of clock 2 (blood test, body metrics, and sex).

SPORTS DECELERATE BIOLOGICAL AGING
Among these athletes, 88% engaged in a minimum of 6 h of
weekly training volume, contributing to an average weekly
training duration of 13.2 h. The majority were involved in
mixed sports disciplines (n = 322, 76%), followed by endurance
(n = 53, 13%), power (n = 38, 9%), and skill (n = 8, 2%) types.

Blood test–based age acceleration is inversely as-
sociated with high-volume sports activity.We found a
significantly lower age acceleration in the athlete dataset com-
pared with the age-matched NHANES dataset by both aging
clocks (clock 1: median = −1.7, IQR = [−8.9, 6.14], vs me-
dian = 1.4, IQR = [−3.8, 7.4]; clock 2: median = −1.7,
IQR = [−7.6, 4.4], vs median = 1.7, IQR = [−2.8, 7.5] yr,
P < 0.0001), Figures 2A and 2B. Our findings suggest that
blood test–based age acceleration is inversely associated with
high-volume sports activity.

We also examined the associations between BMI and blood
test–based age acceleration. We observed that BMI was posi-
tively associated with clock 1 age acceleration for both the
NHANES test dataset (r = 0.113, P < 0.001) and the
age-matched NHANES test dataset (r = 0.168, P < 0.01),
Figures 2C and 2D. By contrast, within the athlete dataset,
we observed no association between BMI and age accelera-
tion; however, age acceleration based on both aging clocks
was positively associated with body fat percentage
(r = 0.208 and P < 0.05 for clock 1, as well as r = 0.259 and
P < 0.01 for clock 2), Figures 2E and 2F. Accordingly,
SMM is negatively associated with the clock 1 age accelera-
tion within the athlete dataset (r = −0.182, P < 0.05),
Figure 2E. In summary, BMI is positively associated with
blood test–based age acceleration in the general population;
however, athletes exhibit distinct patterns. In their case, body
fat percentage may be a more appropriate indicator of aging.

We further investigated the possible sex differences in blood
test–based age acceleration. Age acceleration was higher in fe-
male athletes compared with male athletes (median = 2.9,
IQR = [−2.8, 9.4], vs median = −5.9, IQR = [−12.1, 2.3] yr,
P < 0.0001), Figure 2I. By contrast, in the age-matched
st and the athlete dataset. A. Age prediction of clock 1 (blood test only). B.

Medicine & Science in Sports & Exercise® 871



FIGURE 2—Inverse association of blood test–based age acceleration and high-volume sports activity. A–B. Differences in age acceleration between the ath-
lete dataset (athlete population) and the age-matched NHANES dataset (general population) evaluated by clocks 1 and 2, respectively. C–F. Pearson cor-
relation coefficient of age, predicted age, delta age, and age acceleration against training volume, SMM, fat percentage, and BMI over the different datasets.
G–I. Sex difference in age acceleration over the three datasets. BMI and sex difference are analyzed only for clock 1, as clock 2 used both as training var-
iables. Pred, predicted; Acc, acceleration; vol, volume.
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NHANES test database, we observed that themean age acceler-
ation of females was lower compared with males (median = 0.7,
IQR [−3.4, 6.2], vs median = 2.9, IQR [−4.1, 10.1], P < 0.05),
Figure 2H. The same associationwas observed in theNHANES
test dataset, which represents a general population with a
broader age range (females: median = −0.3, IQR [−6.9, 5.4]
vsmales: median = 2.3, IQR [−4.3, 8.2],P< 0.0001), Figure 2I.

We hypothesized that the observed sex differences influ-
ence the decreased age acceleration in athletes, as depicted in
Figures 2A and 2B. Therefore, we separated the athlete dataset
and the age-matched NHANES dataset by sex and found that
the effect remained in males but did not remain in females
(Supplemental Fig. 2, Supplemental Digital Content 1, http://
links.lww.com/MSS/C991). In other words, the age acceleration
of female athletes was not lower than that of female controls.
872 Official Journal of the American College of Sports Medicine
Feature importance analysis. We applied the Shapley
Additive Explanation method (27) to examine the most impor-
tant features used by clocks 1 and 2.We investigated the effect
of the 10 most important features on the predicted age when
clocks 1 and 2 were applied separately to the athlete dataset
and the age-matched NHANES test dataset (Fig. 3). Serum
ferritin levels, mean cell volume, blood urea nitrogen, and se-
rum albumin are among the essential variables in the age pre-
diction in the NHANES dataset, with the first three positively
and the fourth negatively associated with laboratory test–
based age. Another observation was that for clock 2, BMI is
a more important variable in the age-matched NHANES
dataset than in the athlete dataset. Sex was the sixth most im-
portant feature when testing in the general population, but it
was not among the 10 most important ones (14th) for athletes.
http://www.acsm-msse.org

http://links.lww.com/MSS/C991
http://links.lww.com/MSS/C991
http://www.acsm-msse.org


FIGURE 3—Themost important features of the two aging clocks evaluated on the age-matched NHANES test and the athlete datasets. Each dot indicates a
test sample.Dots concentrating on the left or right side of the panels indicate a negative or positive effect on the predicted age, respectively.Blue dots indicate
low, and red dots indicate high values of the given variable for the given test sample (gray dots indicate missing values). A
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 Repeated test analysis. In our experiments, we use the
laboratory testing data from athletes for a secondary purpose,
primarily aimed at investigating asymptomatic, mild, or mod-
erately symptomatic SARS-CoV-2 infections. Subsequently,
for certain individuals, a follow-up examination was conducted
after their recovery. Among the athlete dataset, complete re-
peated blood tests were available for 20 individuals, with a me-
dian time difference of 107 d between the samplings. To evalu-
ate the potential effect of recent SARS-CoV-2 infection on blood
test–based age, we analyzed the variance in predicted age be-
tween the two measurements, accounting for the elapsed time.
The difference was not significant by using one-sample t-tests
(see Methods). We also examined the consistency of age accel-
eration between the two measurements. The age acceleration of
the first measurement was strongly associatedwith the age accel-
eration of the second measurement for both clock 1 (r = 0.7231,
P = 0.00031) and clock 2 (r = 0.6184, P = 0.00365).
DISCUSSION

We presented two aging clocks trained on blood tests, body
measurements, and sex data in different setups and demon-
strated a stable performance of the clocks across the examined
general and athletic populations. After matching the ethnicity
SPORTS DECELERATE BIOLOGICAL AGING
(considering only Caucasians), health status (considering only
reportedly healthy individuals), and age between the NHANES
database and the Hungarian athlete datasets, we observed no
considerable difference in the accuracy of the clocks across
the groups (Table 2). Interestingly, we observed a decrease in
performance (a remarkable reduction of r and a slight increase
in MAE for both clocks) after narrowing the age range of the
NHANES test dataset by age matching to the athlete dataset.
This observation indicates that age distribution may influence
age prediction performance evaluations.

A previous study examined the performance of blood test–
based age prediction models across different populations (18).
When the models were trained and tested on the same popula-
tion, the best performance was r = 0.84 and MAE = 6.25 (East
Europe). However, the performance decreased remarkably as
the models were trained and tested across different popula-
tions. For example, in the case when a model was trained on
blood tests and sex variables of the Canadian population and
tested on the East European population, the performance de-
graded to r = 0.52 and MAE = 9.68. Here, we reached similar
performances when we trained on the Caucasian American
population and tested on the Caucasian Hungarian population.

Blood test–based age acceleration was significantly lower
in the athlete dataset for both clocks, which underlines the
Medicine & Science in Sports & Exercise® 873
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beneficial effect of regular physical activity. An intriguing
finding is that age acceleration is lower in athletic males com-
pared with athletic females (Fig. 2G), but this phenomenon is
reversed in nonathletes (Figs. 2H and 2I). In other words, per-
forming high-volume physical activity has a greater effect on
biological age in young adult males than in females. The
sex-separated analysis (Supplemental Fig. 2, Supplemental
Digital Content 1, http://links.lww.com/MSS/C991) also sup-
ports this idea.

In the general population, BMI was positively associated
with increased biological aging measures. By contrast, when
the same clock was applied to athletes, BMI was not associated
with age acceleration. This suggests that using BMI is more ap-
propriate in nonathletes, but other measures are necessary in
athletes to elucidate associations between biological age and
body composition. Indeed, in a cohort of 2435 middle-aged,
nonathlete subjects, an increased accelerometer-measured
physical activity was associated with lower epigenetic age, al-
beit BMI attenuated this effect (28). On the other hand,
Garrido-Chamorro et al. (29,30) found that BMI alone is un-
suitable for reporting the quality of body composition in ath-
letes despite showing a good association with body fat content.

By contrast, in athletes, SMM is inversely associated with
age acceleration, indicating a beneficial effect on aging. Addi-
tionally, body fat percentage is positively associated with age
acceleration, suggesting an adverse effect on aging in athletes.
These two findings again underscore the importance of apply-
ing advanced body composition parameters in athletes within
and beyond clinical environments.

Being highly active and engaging in regular physical activ-
ity can lead to a wide range of physiological changes in the
body, some of which are reflected in laboratory markers
(31). These changes may have implications not only in the
context of daily diagnostics for clinicians working with ath-
letes but also in the estimation of biological age. Our feature
importance analysis revealed several clinically meaningful
laboratory parameters (such as serum ferritin, blood urea nitro-
gen, mean cell volume, and albumin levels) that are important
in age prediction by our blood test–based clocks.

The estimation of biological age has become an important
tool in the assessment of athletes and physically active individ-
uals in the last decade. In young adolescent athletes, biological
maturation has been mainly measured using noninvasive
methods, including skeletal age, pubertal status, and peak
height velocity (32,33). Sex differences in the rate of decline
in physical activity observed during adolescence and the bio-
logical age measured using peak height velocity were closely
associated with the commencement of the reduction in exer-
cise volume (34).

During adulthood, biological age has other meaningful impli-
cations in sports. The optimal or “best” age for different sports
and even positions within one discipline (e.g., goalkeeper vs
striker in soccer) is not readily definable. At the same time, deter-
miningwhen to retire from a professional athletic career is highly
dependent on the individual’s performance and, intuitively, bi-
ological age. Chronological age may also lack appropriateness
874 Official Journal of the American College of Sports Medicine
in predicting the beginning of a decline in physical perfor-
mance in athletes approaching the end of their professional ca-
reers (35).

In contemporary times, assessing the health status of com-
petitive athletes gains increasing attention, which involves
performing comprehensive and complex sports medicine in-
vestigations. Laboratory tests are widely available and per-
formed in a variety of clinical settings. Our results suggest that
it is practical to define and exploit the potential added value of
blood tests in biological age estimation, as long as epigenetic
testing is not routinely performed and remains expensive. In
addition to its recognized prognostic significance, using the
degree and direction of changes in biological age as an outcome
variable could emerge as a promising marker for enhancing
physical activity-based lifestyle interventions and extending
its applicability beyond. Nevertheless, blood test–based bio-
logical age measuring models need further improvement and
research to increase their accuracy and define applicability in
athletes and other populations.

Limitations.Laboratory blood testing in the athlete dataset
was carried out after recovery from an asymptomatic, mild, or
moderately symptomatic SARS-CoV-2 infection. Although
none of the subjects was hospitalized before due to COVID-19
and had no limiting symptoms upon presenting for blood testing,
the recent infection might have caused some alterations in their
results. On the other hand, we did not find a significant difference
in the predicted age in those subjects who returned to a repeated
laboratory testing median 107 d later. Furthermore, age accel-
erations showed a strong association between the two exam-
ined time points with both clocks.

In the absence of directly comparable training volume-
related variables, we were not able to contrast the physical ac-
tivity of the NHANES dataset and the athlete dataset. The lack
of a high-volume control group from the same geographical
area limited the direct comparison of the Hungarian athlete
data to a local control group. We relied on data from the
NHANES database in the United States, which provided a
comparable set of matched variables, such as ethnicity, health
status, and age. Although we achieved the same age prediction
performance for the two matched datasets, there still can be
some batch effect influencing the results. In addition, the train-
ing and testing data contain only Caucasians limiting usage
and applicability to other ethnic groups.
CONCLUSIONS

We developed two distinct blood test–based aging clocks
demonstrating stable performance and applied them to athletes
and healthy controls. Our findings suggest that high-volume
sports activity may slow down the aging process. Because lab-
oratory tests are readily accessible, blood test–based aging
clocks offer a convenient method for predicting the biological
age of diverse populations including athletes. This approach
also carries the potential to become an instrument for adjusting
training programs and clinical treatments to biological age in-
stead of chronological age.
http://www.acsm-msse.org
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